Unit 3: Boolean Expressions and If
Statements

Mr. Pelletier, Lord Byng Secondary

In Unit 3, we explore in-depth the if statement, which allows programmers to control the FLOW
of a program’s execution.

Topics will include:
* The boolean data type and relational operators that make up boolean expressions
* The if statement that uses a boolean expression to decide whether code should run or not.
* The If else statement that can choose between two blocks of code to run
* The if else if statement that can choose between an arbitrary number of choices to run.
¢ &&, ||, and ! operators to create compound boolean expressions.
* How to make simplify and evaluate equivalent boolean expressions

* How to compare objects.

Unit 3.1: Boolean Expressions

Mr. Pelletier, Lord Byng Secondary

Overview

Recall that Expressions are combinations of variables, literals, and
operators that evaluate to a single value.

We have already looked at Arithmetic Expressions that evaluate to
numbers and allow computers to do math.

Now we will look at Boolean Expressions that evaluate to true/false.
They allow computers to ask questions and make decisions.

Relational Operators

Relational Operators

< > <= B == | =

Less than Greater than Less than Greater than Exactly Equals Not Equals
or equal to or equal to

You Try It

What does this boolean expression evaluate to?
5 % 3 ==0)==(3 > 5)

Assume x and y are int variables. What values of x and y will make
this boolean expression true?

(x >= 10) == (y < 12)

Unit 3.2: If Statements

Overview

If statements allow you to control the flow of a

program. They can allow a program to choose

to execute a block of code or not based on the
value of a boolean expression.

1t (boolean expression) {

Statement(s)

T

boolean-
expression

true

Statement(s)

false

Example with Braces

if (r >= 0) {

area = r * r * Math.PI;
System.out.println("Circle area: " + area);

}

System.out.println("Circles are neat");

 What is the output if r is positive”? What about if r is negative?

Example with No Braces

What’s going on here? What happens if r is positive? Negative?

if (r >= 0)
area = r * r * Math.PI;
System.out.println("Circle area: " + area);

System.out.println("Circles are neat");

Example with No Braces

If there are no braces, Java treats only the next statement as being
connected to the If statement.

if (r >= 0)
area = r x r x Math.PI;
System.out.println("Circle area: " + area);

System.out.println("Circles are neat");

A Note About Style 1/5

If you have an if statement like this:

boolean alive = Llives > 0;
1f (alive == true) {
playGame() ;

A Note About Style 2/5

This Is equivalent:

boolean alive = lives > 0; boolean alive = lives > 0;
if (alive == true) { 1t (alive) {
playGame () ; playGame () ;

A Note About Style 3/5

Similarly, these if statements are also the same:

boolean alive = lives > 0; boolean alive = lives > 0;
if (alive == false) { it (lalive) {

playGame() ; area = r x r * Math.PI;
} }

The !'is the "not" operator, which inverts the boolean value. We will see more
about this and other boolean operators Iin lesson 3.5

A Note About Style 4/5

There are also, these If statements are also the same:

boolean over2l;
1t (age > 21) {
over2l = true;

} else {
over2ll

false;

A Note About Style 5/5

Many statements can be more succinctly expressed.

boolean over2l;
1t (age > 21) {
over2l = truej;

} else {
over2ll

* boolean over2l = age > 21;

false;

Unit 3.3: If Else Statements

Mr. Pelletier, Lord Byng Secondary

Overview

If else statements allow you to control the flow of a program. They can allow a
program to choose one of two blocks of code to execute based on the value

of a boolean expression.
1t (boolean expression) {

Statement(s) for the true case

} else {

Statement(s) for the false case

Overview

?

true boolean- false
expression
Statement(s) for the true case Statement(s) for the false case
®

Example with Braces

if (r >= 0) {
area = r x r * PI;
System.out.println("The area for the circle of radius " +
r + " dis " + area);
} else {
System.out.println("Error: radius can’t be negative");

Example with Braces

1T (n % == 0) {
System.out.print(“even”);
} else {

System.out.print("odd”) ;
}

This code prints "odd" or "even” depending on whether n is odd or even.

If Else is a Single, Continuous Statement

it (n % 2 == 0) {
System.out.print(“even”);

}
System.out.println(“Let’s take a break”); X

else {
System.out.print("odd”) ;

}

This will not compile because the else clause must immediately
follow the if block.

Dangling Else

What is printed out if nis 77?

int n = ...; //read user input
if (n > 0)
if (n % 2 == 0)
System.out.println(n) ;
else

System.out.println(n + " is not positive");

Unit 3.4: If Else If Statements

Overview

If else-If statements allow you to choose between an arbitrary number of
options. This example shows three, but you can keep on adding more.

1T (boolean expression 1) {
block one!

} else 1f (boolean expression 2) {
block two!

} else 1f (boolean expression 3) {
block three!

How it works 1/4

Java checks the conditions sequentially from top to bottom. Once a
condition has been met, it DOES NOT check the rest of the conditions or run
any of the other blocks. For example:

if (score >= 90.0) grade = 'A';

else 1f (score >= 80.0) grade = 'B';
else 1f (score >= 70.0) grade = 'C';
else 1f (score >= 60.0) grade = 'D';
else grade = 'F';

T

score >= 90 -false

score >= 60 —alse

grade C’

IFI

grade

How it works 2/4

Compare these two pieces of code. What is the difference if x is 507

if (x > 10) if (x > 10)
System.out.println(“A”); System.out.println(“A”) ;
else if (x > 20) if (x > 20)
System.out.println(“B”); System.out.println(“B”);
else if (x > 30) it (x > 30)

System.out.println(“C”); System.out.println(“C”);

How it works 4/4

The else clause at the end is optional.

1T (grade >= 100)
System.out.println(“A++”);
else 1f (grade >= 95)
System.out.println(“A+”);
else 1f (grade >= 90)
System.out.println(“A”);
—p else

System.out.println(“"_(Y)_/"7);

Unit 3.5: Compound Boolean
EXpressions

Mr. Pelletier, Lord Byng Secondary

Overview

If else If statements allow choose between an arbitrary number of options.
This example shows three, but you can keep on adding more.

Operator Meaning
| Not
&& And
|| Or

Overview

Here’s a set of Truth Tables that show how they work:

AND OR

Operator Precedence 1/3

This is also their order of precedence. Like algebraic expressions, boolean

expressions are evaluated left to right and you can use parentheses to force
operations to happen out of precedence order.

Operator Meaning
| Not
& & And
|| Or

Order of Precedence 2/3

Given the following declaration, what do the following compound boolean
expressions evaluate to?

boolean A = true, B = true, C = false;

1. 1A && C 4. (A || B) && C

2. (A && C) 5. A & !(B && C)

3. A || B & C

Operator
Precedence 3/3

Direction of

Operator Description Evaluation
() Parentheses ——
+, —- Increment/Decrement ——-
! Logical not @
(d(cjunbtl)e) casting —>
x /% Multiplicative ——
+ -+ Additive, String Concatenation q
: : Comparison —-
Tz Equality a

&& And
—_—

| | Or
—>

= += = Assignment

D S

Short Circuit Evaluation 1/3

Java stops evaluating logical expressions as soon as the e
result is known. For &&:

conditionl && condition?2 && condition3

Java evaluates the conditions from left to right. As soon as A _Short .
a condition evaluates as false, it doesn’t evaluate the rest
of the conditions; the whole expression must be false.

Short Circuit Evaluation 1/3

This also happens with | |
conditionl || condition2 || condition3

Working left to right, if Java finds a condition that evaluates
to true, then it stops evaluating the rest of the expressions.

A short circuit

Short Circuit Evaluation 3/3

This is useful in an example like this:

boolean result = (a !=0) && (b / a > 2);

In this example, the programmer cleverly protected the second condition (b
/ a > 2) from divide by zero errors using Short Circuit Evaluation.

Unit 3.6: Equivalent Boolean
EXpressions

Mr. Pelletier, Lord Byng Secondary

Overview

In this lesson, we will be comparing whether two boolean expressions are
equivalent.

Two boolean expressions are equivalent if they evaluate to the same value In
all case.

We will learn two ways to do this: De Morgan’s law and Truth Tables.

De Morgan’s Laws 1/4

August De Morgan was a 19th
century British mathematician
who read George Boole’s ideas
about boolean logic.

He codified laws to help us
simplify boolean expressions,
especially regarding the !
operator.

De Morgan’s Laws 2/4

How does ! work with relational operators in boolean expressions??

Negating a relational

l(x > 0) IS equivalent to X <= 0 operator makes it

I (x < 0) s equivalent to x >= 0 flip to the opposite
| | operator!

Il (x <= 0) IS equivalent to X > 0

I (x >= 0) isequivalent to X < 0 Negating a boolean

l(x == 0) IS equivalent to X 1= 0 eXpression means

finding the opposite
l(x 1= 0) IS equivalent to X == 0 of that expression

De Morgan’s Laws 3/4

How does ! work with a compound boolean expression? Given 2 boolean
variables/expressions, a and b:

l(a && b) IS equivalent to la || !b

l(a || b) IS equivalent to la && !b

De Morgan’s Laws 3/4

This is effectively the laws of distributing a Not operator

l'(a && b) IS equivalent to la || !b
“flips && —> | |”

l(a || b) IS equivalent to la && !b

I |

“flips | | —> &&”

Visual Example 1/2

Say we have the following boolean expression: (x < -5 || x > 10)

How would we negate it?

Visual Example 2/2

Using De Morgan’s laws:

Therefore, I(x < -5 || x > 10) is equivalent to

X >= =5 && x <= 10

Truth Tables 1/6

Truth Tables allow you to test all combinations of boolean expressions.

Truth Tables 2/6

No column is the same, so none of these boolean expressions are equivalent.

P q p&&q pllg 'p 'q

S LA L U N

Truth Tables 3/6

Let’s use a Truth Table to confirm De Morgan’s Law:

P q 'p 'q ' (p&&q) !'pll!lq

Truth Tables 4/6

Because their truth tables are the same, the expressions are equivalent.

P q 'p 'q ' (p&&q) !'plllq

LI

e

Truth Tables 5/6

Practice it yourself! Are any of these expressions equivalent?

P g Pl lg&é&p (Pplla)lIlp p&&(pllq)

Truth Tables 6/6

Indeed!

P g Pl lg&é&p (Pplla) |l lp p&&(pllq)

B | " .
. .l e 49 .“
3 i N & “ﬁ | v“‘ N &
" £ . - ’ .) 2 .
L N V.

\ VA - N

Example 1/2

Given two boolean variables, x and y, which of the following expressions
IS equivalentto (x && !y)?

A. ('x || y)
B. ('x && y)
C. '('x || y)
D. 1 (1x && V)

E. (x || 'y)

Example 2/2

Given two boolean variables, x and y, which of the following expressions
Is equivalentto (x && !y)?

A. ('x || y)
B. (1x && y)
D. 1('x && y)

E. (x || 'y)

Unit 3.7: Comparing Objects

Overview

How do you compare the value of two objects?

How do you compare whether two non-primitive variables point to the
same object”?

How do you check to see if a non-primitive variable is null?

The Foundational Idea

“The value of a non-
primitive variable Is a
reference to an object”

The Foundational Idea

The == operator compares the value of two variables.

So, for non-primitives, it compares their references, NOT whether the
object they point are equivalent.

“The value of a non-
primitive variable is a
reference to an object”

Example

String sl “Pelletier?”;
String s2 = “Pelletier?”;
String s3 = s2;

String s4;

What is the value of s1 == s2? false!
s2 == s37 true!
s4 !'= null? false!

“The value of a non-
primitive variable is a
reference to an object”

Alilases

If two non-primitives point to the same object, they are called aliases.

String sl “Pelletier”;
String s2 “Pelletier?”;
String s3 = s2; Here, s2 and s3 are aliases

String s4;

“The value of a non-
primitive variable is a
reference to an object”

So How Do You Compare Objects?

Most objects have a built-in equals and/or compareTo method.

String sl1 = “Pelletier?”;
String s2 = “Pelletier?”;
String s3 = s2;

String s4;

What are the values of the following? s1.equals(s2)? true

s2.equals(s3)? true
s4.equals(sl)? null pointer
exception!

“The value of a non-
primitive variable is a
\ reference to an object”

