
Mr. Pelletier, Lord Byng Secondary

Unit 3: Boolean Expressions and If
Statements

In Unit 3, we explore in-depth the if statement, which allows programmers to control the FLOW
of a program’s execution.

Topics will include:

• The boolean data type and relational operators that make up boolean expressions

• The if statement that uses a boolean expression to decide whether code should run or not.

• The if else statement that can choose between two blocks of code to run

• The if else if statement that can choose between an arbitrary number of choices to run.

• &&, ||, and ! operators to create compound boolean expressions.

• How to make simplify and evaluate equivalent boolean expressions

• How to compare objects.

Unit 3 Overview

Mr. Pelletier, Lord Byng Secondary

Unit 3.1: Boolean Expressions

Recall that Expressions are combinations of variables, literals, and
operators that evaluate to a single value.

We have already looked at Arithmetic Expressions that evaluate to
numbers and allow computers to do math.

Now we will look at Boolean Expressions that evaluate to true/false.
They allow computers to ask questions and make decisions.

Overview
Unit 3.1 Boolean Expressions

Relational Operators
Unit 3.1 Boolean Expressions

What does this boolean expression evaluate to?

 (5 % 3 == 0) == (3 > 5)

Assume x and y are int variables. What values of x and y will make
this boolean expression true?

 (x >= 10) == (y < 12)

You Try It
Unit 3.1 Boolean Expressions

Mr. Pelletier, Lord Byng Secondary

Unit 3.2: If Statements

If statements allow you to control the flow of a  
program. They can allow a program to choose  
to execute a block of code or not based on the  
value of a boolean expression. 

if (boolean expression) {

Statement(s)

}

Overview
Unit 3.2 If Statements

• What is the output if r is positive? What about if r is negative?

if (r >= 0) {

 area = r * r * Math.PI; 
 System.out.println("Circle area: " + area);

}

System.out.println("Circles are neat");

Example with Braces
Unit 3.2 If Statements

What’s going on here? What happens if r is positive? Negative?

if (r >= 0)

area = r * r * Math.PI; 
System.out.println("Circle area: " + area);

System.out.println("Circles are neat");

Example with No Braces
Unit 3.2 If Statements

If there are no braces, Java treats only the next statement as being
connected to the if statement.

if (r >= 0)

 area = r * r * Math.PI; 
System.out.println("Circle area: " + area);

System.out.println("Circles are neat");

Example with No Braces
Unit 3.2 If Statements

If you have an if statement like this:

boolean alive = lives > 0;

if (alive == true) {

 playGame();

} 

A Note About Style 1/5
Unit 3.2 If Statements

 This is equivalent:

boolean alive = lives > 0;

if (alive == true) {

 playGame();

} 

A Note About Style 2/5
Unit 3.2 If Statements

boolean alive = lives > 0;

if (alive) {

 playGame();

} 

Similarly, these if statements are also the same:

boolean alive = lives > 0;

if (alive == false) {

 playGame();

} 

The ! is the "not" operator, which inverts the boolean value. We will see more
about this and other boolean operators in lesson 3.5

A Note About Style 3/5
Unit 3.2 If Statements

boolean alive = lives > 0;

if (!alive) {

 area = r * r * Math.PI;

} 

There are also, these if statements are also the same:

boolean over21;

if (age > 21) {

 over21 = true;

} else {

 over21 = false;

} 

A Note About Style 4/5
Unit 3.2 If Statements

Many statements can be more succinctly expressed.

boolean over21;

if (age > 21) {

 over21 = true;

} else {

 over21 = false;

} 

A Note About Style 5/5
Unit 3.2 If Statements

boolean over21 = age > 21;

Mr. Pelletier, Lord Byng Secondary

Unit 3.3: If Else Statements

If else statements allow you to control the flow of a program. They can allow a
program to choose one of two blocks of code to execute based on the value
of a boolean expression. 

if (boolean expression) {

Statement(s) for the true case

} else {

 Statement(s) for the false case

}

Overview
Unit 3.3 If Else Statements

Overview
Unit 3.3 If Else Statements

Example with Braces
Unit 3.3 If Else Statements

if (r >= 0) { 
 area = r * r * PI; 
 System.out.println("The area for the circle of radius " +

 r + " is " + area);

} else { 
 System.out.println("Error: radius can’t be negative");

}

This code prints "odd" or "even" depending on whether n is odd or even.

Example with Braces
Unit 3.3 If Else Statements

if (n % 2 == 0) { 
 System.out.print(“even”); 
} else { 
 System.out.print("odd”); 
}

if (n % 2 == 0) { 
 System.out.print(“even”); 
} 
System.out.println(“Let’s take a break”); ❌ 
else { 
 System.out.print("odd”); 
}

This will not compile because the else clause must immediately  
follow the if block.

If Else is a Single, Continuous Statement
Unit 3.3 If Else Statements

What is printed out if n is 7?

Dangling Else
Unit 3.3 If Else Statements

Mr. Pelletier, Lord Byng Secondary

Unit 3.4: If Else If Statements

If else-if statements allow you to choose between an arbitrary number of
options. This example shows three, but you can keep on adding more. 

if (boolean expression 1) { 
 block one! 
} else if (boolean expression 2) { 
 block two! 
} else if (boolean expression 3) { 
 block three! 
} ...

Overview
Unit 3.4 If Else-If Statements

Java checks the conditions sequentially from top to bottom. Once a
condition has been met, it DOES NOT check the rest of the conditions or run
any of the other blocks. For example: 

if (score >= 90.0) grade = 'A';

else if (score >= 80.0) grade = 'B';

else if (score >= 70.0) grade = 'C';

else if (score >= 60.0) grade = 'D';

else grade = 'F';

How it works 1/4
Unit 3.4 If Else Statements

Compare these two pieces of code. What is the difference if x is 50? 

if (x > 10) 
 System.out.println(“A”); 
else if (x > 20) 
 System.out.println(“B”); 
else if (x > 30) 
 System.out.println(“C”); 

How it works 2/4
Unit 3.4 If Else Statements

if (x > 10) 
 System.out.println(“A”); 
if (x > 20) 
 System.out.println(“B”); 
if (x > 30) 
 System.out.println(“C”); 

The else clause at the end is optional.

How it works 4/4
Unit 3.4 If Else Statements

if (grade >= 100) 
 System.out.println(“A++”); 
else if (grade >= 95) 
 System.out.println(“A+”); 
else if (grade >= 90) 
 System.out.println(“A”); 
else 
 System.out.println(“¯_(ツ)_/¯”); 

Mr. Pelletier, Lord Byng Secondary

Unit 3.5: Compound Boolean
Expressions

If else if statements allow choose between an arbitrary number of options.
This example shows three, but you can keep on adding more. 

Overview
Unit 3.5 Compound Boolean Expressions

Operator Meaning

! Not

&& And

|| Or

Here’s a set of Truth Tables that show how they work: 
 
 
 AND OR NOT

 NOT

Overview
Unit 3.5 Compound Boolean Expressions

A B A&&B
F F F
T F F
F T F
T T T

A B A||B
F F F
T F T
F T T
T T T

A !A
F T
T F

This is also their order of precedence. Like algebraic expressions, boolean
expressions are evaluated left to right and you can use parentheses to force
operations to happen out of precedence order.

Operator Precedence 1/3
Unit 3.5 Compound Boolean Expressions

Operator Meaning

! Not

&& And

|| Or

Given the following declaration, what do the following compound boolean
expressions evaluate to?

boolean A = true, B = true, C = false;  

1. !A && C 4. (A || B) && C

2. !(A && C) 5. A && !(B && C)

3. A || B && C

Order of Precedence 2/3
Unit 3.5 Compound Boolean Expressions

Operator
Precedence 3/3

Java stops evaluating logical expressions as soon as the
result is known. For &&: 
 
condition1 && condition2 && condition3 ...  

Java evaluates the conditions from left to right. As soon as
a condition evaluates as false, it doesn’t evaluate the rest
of the conditions; the whole expression must be false.

Short Circuit Evaluation 1/3
Unit 3.5 Compound Boolean Expressions

This also happens with || 
 
condition1 || condition2 || condition3 ...  

Working left to right, if Java finds a condition that evaluates
to true, then it stops evaluating the rest of the expressions.

Short Circuit Evaluation 1/3
Unit 3.5 Compound Boolean Expressions

This is useful in an example like this:

boolean result = (a != 0) && (b / a > 2);

In this example, the programmer cleverly protected the second condition (b
/ a > 2) from divide by zero errors using Short Circuit Evaluation.

Short Circuit Evaluation 3/3
Unit 3.5 Compound Boolean Expressions

Mr. Pelletier, Lord Byng Secondary

Unit 3.6: Equivalent Boolean
Expressions

In this lesson, we will be comparing whether two boolean expressions are
equivalent.

Two boolean expressions are equivalent if they evaluate to the same value in
all case.

We will learn two ways to do this: De Morgan’s law and Truth Tables.

Overview
Unit 3.6 Equivalent Boolean Expressions

August De Morgan was a 19th
century British mathematician
who read George Boole’s ideas
about boolean logic.

He codified laws to help us
simplify boolean expressions,
especially regarding the !
operator.

De Morgan’s Laws 1/4
Unit 3.6 Equivalent Boolean Expressions

How does ! work with relational operators in boolean expressions?

!(x > 0) is equivalent to x <= 0

!(x < 0) is equivalent to x >= 0

!(x <= 0) is equivalent to x > 0

!(x >= 0) is equivalent to x < 0

!(x == 0) is equivalent to x != 0

!(x != 0) is equivalent to x == 0

De Morgan’s Laws 2/4
Unit 3.6 Equivalent Boolean Expressions

Negating a relational

operator makes it

flip to the opposite

operator!

Negating a boolean

expression means

finding the opposite

of that expression

How does ! work with a compound boolean expression? Given 2 boolean
variables/expressions, a and b:

!(a && b) is equivalent to !a || !b

!(a || b) is equivalent to !a && !b

De Morgan’s Laws 3/4
Unit 3.6 Equivalent Boolean Expressions

This is effectively the laws of distributing a Not operator 

 
!(a && b) is equivalent to !a || !b

  
 “flips && —> ||”

!(a || b) is equivalent to !a && !b

 “flips || —> &&”

De Morgan’s Laws 3/4
Unit 3.6 Equivalent Boolean Expressions

Say we have the following boolean expression: (x < -5 || x > 10)

How would we negate it?

Visual Example 1/2
Unit 3.6 Equivalent Boolean Expressions

Using De Morgan’s laws:

 !(x < -5 || x > 10)

 !(x < -5) && !(x > 10)

 x >= -5 && x <= 10

Therefore, !(x < -5 || x > 10) is equivalent to

 x >= -5 && x <= 10

Visual Example 2/2
Unit 3.6 Equivalent Boolean Expressions

Truth Tables allow you to test all combinations of boolean expressions.

Truth Tables 1/6
Unit 3.6 Equivalent Boolean Expressions

No column is the same, so none of these boolean expressions are equivalent.

Truth Tables 2/6
Unit 3.6 Equivalent Boolean Expressions

Let’s use a Truth Table to confirm De Morgan’s Law:

Truth Tables 3/6
Unit 3.6 Equivalent Boolean Expressions

Because their truth tables are the same, the expressions are equivalent.

Truth Tables 4/6
Unit 3.6 Equivalent Boolean Expressions

Practice it yourself! Are any of these expressions equivalent?

Truth Tables 5/6
Unit 3.6 Equivalent Boolean Expressions

Indeed!

Truth Tables 6/6
Unit 3.6 Equivalent Boolean Expressions

Given two boolean variables, x and y, which of the following expressions
is equivalent to (x && !y)?

Example 1/2
Unit 3.6 Equivalent Boolean Expressions

Given two boolean variables, x and y, which of the following expressions
is equivalent to (x && !y)?

Example 2/2
Unit 3.6 Equivalent Boolean Expressions

Mr. Pelletier, Lord Byng Secondary

Unit 3.7: Comparing Objects

How do you compare the value of two objects?

How do you compare whether two non-primitive variables point to the
same object?

How do you check to see if a non-primitive variable is null?

Overview
Unit 3.7 Comparing Objects

The Foundational Idea
Unit 3.7 Comparing Objects

“The value of a non-
primitive variable is a

reference to an object”

The == operator compares the value of two variables.

So, for non-primitives, it compares their references, NOT whether the
object they point are equivalent.

The Foundational Idea
Unit 3.7 Comparing Objects

“The value of a non-
primitive variable is a

reference to an object”

String s1 = “Pelletier”; 
String s2 = “Pelletier”; 
String s3 = s2; 
String s4;

What is the value of s1 == s2? false! 
 s2 == s3? true! 
 s4 != null? false!

Example
Unit 3.7 Comparing Objects

“The value of a non-
primitive variable is a

reference to an object”

If two non-primitives point to the same object, they are called aliases.

String s1 = “Pelletier”; 
String s2 = “Pelletier”; 
String s3 = s2; Here, s2 and s3 are aliases 
String s4;

Aliases
Unit 3.7 Comparing Objects

“The value of a non-
primitive variable is a

reference to an object”

Most objects have a built-in equals and/or compareTo method.

String s1 = “Pelletier”; 
String s2 = “Pelletier”; 
String s3 = s2;  
String s4;

What are the values of the following? s1.equals(s2)? true 
 s2.equals(s3)? true 
 s4.equals(s1)? null pointer  
 exception!

So How Do You Compare Objects?
Unit 3.7 Comparing Objects

“The value of a non-
primitive variable is a

reference to an object”

